Question: -

The angles A, B and C of a $\triangle ABC$ are in AP and $a: b = 1:\sqrt{3}$. If c = 4 cm, then the area (in sq cm) of this triangle is (2019 Main, 10 April II) (a) $\frac{2}{\sqrt{3}}$ (b) $4\sqrt{3}$ (c) $2\sqrt{3}$ (d) $\frac{4}{\sqrt{3}}$

Solution: -

It is given that angles of a $\triangle ABC$ are in AP. $\angle A + \angle B + \angle C = 180^{\circ}$ So. $\Rightarrow \angle B - d + \angle B + \angle B + d = 180^{\circ}$ [if $\angle A$, $\angle B$ and $\angle C$ are in AP, then it taken as $\angle B - d$, $\angle B$, $\angle B + d$ respectively, where d is common difference of AP] $3 \angle B = 180^{\circ} \implies \angle B = 60^{\circ}$ \Rightarrow ...(i) $\frac{a}{b} = \frac{1}{\sqrt{3}}$ and [given] $\frac{\sin A}{\sin B} = \frac{1}{\sqrt{3}}$ \Rightarrow by sine rule $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ $\frac{\sin A}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \qquad \qquad \left[\because \sin B = \sin 60^\circ = \frac{\sqrt{3}}{2} \right]$ $\Rightarrow \sin A = \frac{1}{2} \Rightarrow \angle A = 30^{\circ}$ $\angle C = 90^{\circ}$ So. .: From sine rule, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{a}{\frac{1}{2}} = \frac{b}{\frac{\sqrt{3}}{2}} = \frac{4}{1}$ [: c = 4 cm] \Rightarrow $a = 2 \text{ cm}, b = 2\sqrt{3} \text{ cm}$ \Rightarrow :. Area of $\triangle ABC = \frac{1}{2} ab \sin C = \frac{1}{2} \times 2 \times 2\sqrt{3} \times 1$ $=2\sqrt{3}$ sq. cm